Motor data-regularized nonnegative matrix factorization for ego-noise suppression

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Learning Regularized Nonnegative Matrix Factorization

Nonnegative Matrix Factorization (NMF) has been widely used in machine learning and data mining. It aims to find two nonnegative matrices whose product can well approximate the nonnegative data matrix, which naturally lead to parts-based representation. In this paper, we present a local learning regularized nonnegative matrix factorization (LLNMF) for clustering. It imposes an additional constr...

متن کامل

EquiNMF: Graph Regularized Multiview Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) methods have proved to be powerful across a wide range of real-world clustering applications. Integrating multiple types of measurements for the same objects/subjects allows us to gain a deeper understanding of the data and refine the clustering. We have developed a novel Graph-reguarized multiview NMF-based method for data integration called EquiNMF. The ...

متن کامل

Nonnegative Matrix Factorization for Spectral Data Analysis

Data analysis is pervasive throughout business, engineering and science. Very often the data to be analyzed is nonnegative, and it is often preferable to take this constraint into account in the analysis process. Here we are concerned with the application of analyzing data obtained using astronomical spectrometers, which provide spectral data which is inherently nonnegative. The identification ...

متن کامل

Constrained Nonnegative Matrix Factorization for Data Privacy

The amount of data that is being produced has increased rapidly so has the various data mining methods with the aim of discovering hidden patterns and knowledge in the data. With this has raised the problem of confidential data being disclosed. This paper is an effort to not let those confidential data be disclosed. We apply constrained nonnegative matrix factorization (NMF) in order to achieve...

متن کامل

Evolutionary Nonnegative Matrix Factorization for Data Compression

Abstract. This paper aims at improving non-negative matrix factorization (NMF) to facilitate data compression. An evolutionary updating strategy is proposed to solve the NMF problem iteratively based on three sets of updating rules including multiplicative, firefly and survival of the fittest rules. For data compression application, the quality of the factorized matrices can be evaluated by mea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: EURASIP Journal on Audio, Speech, and Music Processing

سال: 2020

ISSN: 1687-4722

DOI: 10.1186/s13636-020-00178-0